Copper + Zinc Resources

The Role of Heavy Metals and Environmental Toxins in Psychiatric Disorders

James Greenblatt, MD

Every day we are exposed to toxins from our environment. We may ingest lead and copper from drinking water, phosphate from processed food and soda, various synthetic chemicals from plastic food containers, and pesticides from fruits and vegetables. Both natural heavy metals and man-made chemicals disrupt hormones and brain development. The brain, especially the developing brain, is very vulnerable to contaminants because of its large size (relative to total body weight) and its high concentration of fats which serve as a reservoir for toxicants to build up. This article will explain the role that heavy metals and environmental toxins play in ADHD.

In January 2016, President Obama declared a state of emergency in Flint, Michigan where thousands of residents were exposed to high levels of lead in their drinking water. The corrosive water from the Flint River caused lead from old water pipes to leach into the water supply, putting up to 12,000 children at risk of consuming dangerous levels of lead. Lead poisoning can cause irreversible brain damage and even death, and growing children are especially susceptible to its poisonous effects. Even low blood lead levels reduce IQ, the ability to pay attention, motor function, and academic achievement.

Blood lead levels in children have plummeted since the US phased out the use of leaded gas and paint in the 1970’s. Still, 24 million homes in the US contain deteriorated lead paint and elevated levels of lead-contaminated dust. Soil contains lead from air that settled during our previous industrial use. Old toys and toys from China may contain lead-based paint as well. Again, children are especially at risk of lead poisoning in these environments because they are likely to put their contaminated toys or hands in their mouth.

Since lead poisoning causes cognitive, motor, and behavioral changes, it is not surprising that it also causes ADHD. Lead exposure is estimated to account for 290,000 excess cases of ADHD in US children (Braun et al., 2006). A study on 270 mother-child pairs in Belgium found that doubling prenatal lead exposure (measured in cord blood) was associated with a more than three times higher risk for hyperactivity in boys and girls at age 7-8 (Sioen et al., 2013). A larger study on almost 5,000 US children aged 4-15 found children with the highest blood lead levels were over four times as likely to have ADHD as children with the lowest blood lead levels (Braun et al., 2006).

MRI scans from participants of the Cincinnati Lead Study had striking results: childhood lead exposure was associated with brain volume loss in adulthood. Individuals with higher blood lead levels as children had less gray matter in some brain areas. The main brain region affected was the prefrontal cortex which is responsible for executive function, behavioral regulation, and fine motor control (Cecil et al., 2008).

The CDC has set a blood lead level of 5 µg/dL as the reference value to identify children who require case management. However, many studies have shown lead levels <5 μg/dL still pose problems. For instance, researchers assessing 256 children aged 8-10 concluded, “even low blood lead levels (<5 μg/dL) are associated with inattentive and hyperactivity symptoms and learning difficulties in school-aged children” (Kim et al., 2010).

Copper is an essential trace mineral we must consume from our food supply. It is found in oysters and other shellfish, whole grains, beans, nuts, and potatoes. Like lead, copper can leach into the water supply when copper pipes corrode. One of copper’s roles in the body is to help produce dopamine, the neurotransmitter that provides alertness. However, too much copper creates an excess of dopamine leading to an excess of the neurotransmitter norepinephrine. High levels of these neurotransmitters lead to symptoms similar to ADHD symptoms: hyperactivity, impulsivity, agitation, irritability, and aggressiveness. In children with excess copper, stimulant medications don’t work as well and tend to cause side effects (agitation, anxiousness, change in sleep and appetite). Most ADHD medications work by increasing levels of dopamine, intensifying the effects of excess copper. In addition, excess copper blocks the production of serotonin, a mood-balancing neurotransmitter. This triggers emotional, mental, and behavioral problems, from depression and anxiety to paranoia and psychosis.

The neurotoxic effects of excess copper are well known and a few studies have assessed copper’s role in ADHD symptoms. When researchers compared copper levels in 58 ADHD children to levels in 50 control children, they observed that copper levels were higher in ADHD children. ADHD children also had a higher copper-to-zinc ratio that positively correlated with teacher-rated inattention (Viktorinova et al., 2016). Researchers in Belgium measured the heavy metal exposure of 600 adolescents aged 13-17. They found that an increase in blood copper was associated with a decrease in sustained attention and a decrease in short-term memory. This held true even though this population had normal copper levels (Kicinski et al., 2015). In a randomized controlled trial on 80 adults with ADHD, lower baseline copper levels were associated with better response to treatment with a vitamin-mineral supplement. Among those in the highest copper tertile, only 35% were responders compared to 77% in the middle copper tertile (Rucklidge et al., 2014).

Phosphate is a charged particle (an electrolyte) that contains phosphorus. Phosphorus is the second most abundant mineral in the body (the first is calcium). Phosphorus is a building block for bones and about 85% of total body phosphorus is found in the bones. Deficiencies are rare because phosphorus is naturally abundant in protein-rich foods like meat, poultry, fish, eggs, milk, and milk products as well as in nuts, legumes, cereals, and grains. Although phosphorus is an essential nutrient, too much can be problematic. The phosphate content of processed foods is much higher than that of natural foods, because phosphates are commonly used as additives and preservatives in food production. Our daily intake of phosphate food additives has more than doubled since the 1990’s (Ritz et al., 2012). Phosphorus, especially the form found in processed meats, canned fish, baked goods, and soda is quickly absorbed into the bloodstream so levels can rise rapidly.

Phosphorus reduces the absorption of other vital nutrients, many of which ADHD children are deficient in to begin with. For instance, too much phosphorus can lower calcium levels. High phosphorus coupled with low calcium intake leads to poor bone health. The typical American diet contains two to four times more phosphorus than calcium and soda is often a major contributor to this imbalance. In the body, phosphorus and magnesium bind together, making both minerals unavailable for absorption. This is most apparent when magnesium consumption is low and intake of phosphorus is high. Researchers have found that adding Pepsi to men’s diet for two consecutive days causes their blood phosphate levels to increase and their magnesium excretion to decrease (Weiss et al., 1992).

In the 1990’s, German pharmacist Hertha Hafer discovered that excess dietary phosphate triggered her son’s ADHD symptoms. Within her book, The Hidden Drug, Dietary Phosphate: Cause of Behavior Problems, Learning Difficulties and Juvenile Delinquency, she presents a low phosphate diet as a treatment for ADHD. A low phosphate diet led to dramatic improvements in her son’s behavior, well-being, and school performance, rendering medication unnecessary. Her family’s ADHD problem was resolved and her son had no further problems as long as he avoided high phosphate foods. Hafer finds that children with mild ADHD can improve simply by removing processed meats and phosphate-containing beverages like soda and sports drinks from their diets (Waterhouse, 2008).

Everyday plastic products contain hormone-disrupting chemicals, such as Bisphenol A (BPA) and phthalates, that can migrate into our body and affect the brain and nervous system. These environmental toxins bind to zinc and deplete zinc levels in the body. Phthalates are synthetic chemicals used to make plastics soft and flexible. Phthalates are used in hundreds of consumer products and humans are exposed to them daily though air, water, and food. Di(2-ethylhexyl) phthalate (DEHP) is the name for the most common phthalate. It can be found in products made with plastic such as tablecloths, floor tiles, shower curtains, garden hoses, swimming pool liners, raincoats, shoes, and car upholstery. Based on animal studies, the Environmental Protection Agency (EPA) has classified DEHP as a “probable human carcinogen.” Such studies have shown that DEHP exposure affects development and reproduction.

Multiple studies have linked phthalates with ADHD. Researchers assessed the urine phthalate concentrations and ADHD symptoms in 261 children aged 8-11. ADHD symptoms (inattention and hyperactivity/impulsivity), rated by the children’s teachers, were significantly associated with DEHP metabolites (breakdown products) (Kim et al., 2009).

Prenatal phthalate exposure is associated with problems in childhood behavior and executive functioning. Third-trimester urines from 188 pregnant women were collected and analyzed for phthalate metabolites. Their children were assessed for cognitive and behavioral development between the ages of 4 and 9. Phthalate metabolites were associated with worse aggression, conduct problems, attention problems, depression, externalizing problems, and emotional control (Engel et al., 2010).

Exposure to DEHP in pediatric intensive care units (PICU) is associated with attention deficits in children. In the hospital, DEHP can be found in and can leach from medical devices such as catheters, blood bags, breathing tubes, and feeding tubes. Researchers in Belgium measured levels of DEHP byproducts in the blood of 449 children aged 0-16 while they were staying in a pediatric intensive care unit. Four years later, the children’s neurocognitive development was tested and compared to that of healthy children. The researchers found that all medical devices inserted into the body actively leached DEHP. Predictably, hospitalized children had very high levels of DEHP byproducts throughout their stay in the intensive care unit. A high exposure to DEHP was strongly associated with attention deficit and impaired motor coordination four years after hospital admission. Phthalate exposure from the PICU explained half of the attention deficit in post-PICU patients (Verstraete et al., 2016).

BPA is another problem chemical which is found in food and drink packaging. Exposure to BPA may be related to behavior problems in children. A 2016 nationwide study of 460 children aged 8-15 found children with higher urinary levels of BPA had over five times higher odds of being diagnosed with ADHD (Tewar et al., 2016). In another study, researchers measured BPA concentration in urine samples from women at 27 weeks of pregnancy then assessed the behavior of their children at age 6-10. There was a significant positive association in boys between prenatal BPA concentration and internalizing and externalizing behaviors, withdrawn/depressed behavior, somatic problems, and oppositional/defiant behaviors. Researchers speculated that BPA may have disrupted maternal thyroid or gonadal hormones which are critical to proper brain development (Evan et al., 2014).

In addition to heavy metals and plasticizers, pesticides can cause ADHD symptoms. The American Academy of Pediatrics notes, “Children encounter pesticides daily in air, food, dust, and soil. For many children, diet may be the most influential source. Studies link early-life exposure to organophosphate insecticides with reductions in IQ and abnormal behaviors associated with ADHD and autism” (Roberts & Karr, 2012).

Among pesticides, insecticides may be the most harmful to humans. Insecticides were first developed during World War II as nerve gases. They work by targeting and destroying acetylcholinesterase, an enzyme that controls the neurotransmitter acetylcholine which plays a role in attention, learning, and short-term memory. In one study of 307 children aged 4-9, researchers found that lower acetylcholinesterase activity in boys was linked to a four times greater risk of poor attention and executive function and a six times greater risk of memory and learning problems (Suarez-Lopez et al., 2013). Organophosphates (OPs) are a common type of insecticide that target the nervous system. Forty different types of organophosphates are in use in the United States.

Scientists in California studied 320 mothers and their children. They evaluated urinary levels of metabolites of OPs when the mothers were pregnant. Then when the children were 3- and 5- years old, they were evaluated for ADHD. At both time points, levels of prenatal OP metabolites were positively associated with attention problems and ADHD. Children with mothers who had the highest levels of the OP metabolites were five times more likely to develop ADHD (Marks et al., 2010).

Even organophosphate exposure at low levels common among US children may contribute to ADHD prevalence. Researchers at Harvard University studied more than 1,000 children aged 8-15 from the general population and found that those with detectable urinary levels of an OP metabolite were nearly twice as likely to be diagnosed with ADHD (Bouchard et al., 2010).


References:

  1. Braun et al (2006). Exposures to environmental toxicants and attention deficit hyperactivity disorder in U.S. children. Environmental Health Perspectives, 114(12), 1904-1909.

  2. Cecil et al. (2008). Decreased Brain Volume in Adults with Childhood Lead Exposure. PLoS Medicine, 5(5), PLoS Medicine, 2008, Vol.5(5).

  3. Engel et al. (2010). Prenatal phthalate exposure is associated with childhood behavior and executive functioning. Environmental Health Perspectives, 118(4), 565-71.

  4. Evans et al. (2014). Prenatal bisphenol A exposure and maternally reported behavior in boys and girls. Neurotoxicology, 45, 91-99.

  5. Kicinski et al. (2015). Neurobehavioral function and low-level metal exposure in adolescents. International Journal of Hygiene and Environmental Health, 218(1), 139-146.

  6. Kim et al. (2009). Phthalates Exposure and Attention-Deficit/Hyperactivity Disorder in School-Age Children. Biological Psychiatry, 66(10), 958-963.

  7. Kim et al. (2010). Association between blood lead levels (< 5 μg/dL) and inattention-hyperactivity and neurocognitive profiles in school-aged Korean children. Science of the Total Environment, 408(23), 5737-5743.

  8. Ritz, et al. (2012). Phosphate additives in food--a health risk. Deutsches Ärzteblatt International, 109(4), 49-55.

  9. Roberts & Karr. (2012). Pesticide exposure in children. Pediatrics, 130(6), E1765-88.

  10. Rucklidge et al. (2014). Moderators of treatment response in adults with ADHD treated with a vitamin–mineral supplement. Progress in Neuropsychopharmacology & Biological Psychiatry, 50, 163-171.

  11. Sioen et al. (2013). Prenatal exposure to environmental contaminants and behavioural problems at age 7–8years. Environment International, 59, 225-231.

  12. Suarez-Lopez et al. (2013). Acetylcholinesterase activity and neurodevelopment in boys and girls. Pediatrics, 132(6), E1649-58.

  13. Tewar et al. (2016). Association of Bisphenol A exposure and Attention-Deficit/Hyperactivity Disorder in a national sample of U.S. children. Environmental Research, 150, 112-118.

  14. Verstraete et al. (2016). Circulating phthalates during critical illness in children are associated with long-term attention deficit: A study of a development and a validation cohort. Intensive Care Medicine, 42(3), 379-92.

  15. Viktorinova et al. (2016). Changed Plasma Levels of Zinc and Copper to Zinc Ratio and Their Possible Associations with Parent- and Teacher-Rated Symptoms in Children with Attention-Deficit Hyperactivity Disorder. Biological Trace Element Research, 169(1), 1-7.

  16. Waterhouse, J.C. (2008). Issue 6. Review of the Book: The Hidden Drug, Dietary Phosphate: Causes of Behaviour Problems, Learning Difficulties and Juvenile Delinquency (2000). SynergyHN. https://synergyhn.wordpress.com/phosphate

  17. Weiss, G. H., Sluss, P. M., & Linke, C. A. (1992). Changes in urinary magnesium, citrate, and oxalate levels due to cola consumption. Urology, 39(4), 331-333.

Integrative Treatments for Behavioral Problems in Children

By: James Greenblatt, MD

Attention deficit/hyperactivity disorder (ADHD) is a multifactorial condition that is influenced by genetic, biological, environmental, and nutritional factors. While there are numerous integrative therapies available including vitamins, minerals, herbs, neurofeedback, exercise, and meditation, individuals are unique and thus require personalized treatments based on their own biological needs identified through laboratory testing. In this article, we will discuss commonly overlooked mineral deficiencies and imbalances in the gastrointestinal flora that can exacerbate behavioral symptoms and impede the therapeutic effect of pharmacological treatment.

In the early 1960s, researchers discovered that zinc was an essential trace mineral necessary for normal growth and development. Zinc is also critical for immune function, and the activity of over 300 enzymes is dependent on zinc bioavailability. Zinc is a vital component of the central nervous system, maintaining neurotransmitter activity. This mineral enhances GABA, one of our main inhibitory/relaxation neurotransmitters. Moreover, zinc is needed as a co-factor to produce melatonin which helps regulate dopamine function.

Multiple studies have confirmed that not only are zinc levels lower in children with ADHD, but the extent of the deficiency is proportionately correlated with the severity of ADHD symptoms including inattention, hyperactivity, impulsivity, and conduct problems:

  • Toren et al. (1996) found that almost one-third of 43 ADHD children aged 6-16 were severely deficient in serum zinc.

  • Another study involving 48 ADHD children aged 5-10 demonstrated that most of the participants had serum zinc levels in the lowest 30% of the reference range.

  • There is a highly significant inverse correlation between zinc level and parent and teacher ratings of inattention among children with ADHD (Arnold et al., 2005). A more recent study echoed the same findings, when researchers analyzed the zinc in the hair of 45 children with ADHD against 44 controls. They found that there was a relationship between hair zinc levels and worse overall ADHD symptoms (Shin et al., 2014).

  • In a recent study, 70% of the 20 ADHD cases examined were zinc deficient. Those with lower hair zinc levels reported significantly increased symptoms of inattention, hyperactivity, and impulsivity (Elbaz et al., 2016).

  • In a larger group of 118 children with ADHD, those with the lowest blood levels of zinc had the most severe conduct problems, anxiety, and hyperactivity as rated by their parents (Oner et al., 2010).

In children with ADHD, plasma zinc levels were shown to directly affect information processing via event related potentials which reflect brain activity. In ADHD children compared to controls, the amplitudes of P3 waves in frontal and parietal brain regions were significantly lower (worse working memory) and the latency of P3 in the parietal region was significantly longer (slower information processing). Unsurprisingly, plasma zinc levels were significantly lower in the ADHD children compared to the control children. When a low-zinc ADHD subgroup was compared to a nondeficient ADHD subgroup, the latencies of N2 in frontal and parietal brain regions were significantly shorter (worse information processing and inhibition) (Yorbik et al., 2008).

Supplementation with zinc is more effective at improving ADHD symptoms when compared to placebo, and can also be an effective adjuvant therapy to enhance the therapeutic effect of stimulant medication without increasing the dosage. When 400 ADHD children aged 6-14 were randomized to zinc sulfate 150 mg/day or placebo for 12 weeks, those taking zinc had significantly reduced symptoms of hyperactivity, impulsivity, and impaired socialization (Bilici et al., 2004). Similarly, when over 200 children were randomized to zinc 15 mg/day or to placebo for 10 weeks, those taking zinc saw significant improvement in attention, hyperactivity, oppositional behavior, and conduct disorder. And these children had normal zinc levels to begin with (Üçkardeş et al., 2009). In a small study of 18 boys with ADHD, higher baseline hair zinc levels predicted better behavioral response to amphetamine (Arnold et al., 1990). In a six-week double blind, placebo controlled trial, researchers assessed the effects of zinc in combination with methylphenidate (Ritalin). 44 children aged 5-11 were randomized to methylphenidate plus zinc sulfate 55 mg/day or methylphenidate plus placebo. At week 6, those taking zinc had significantly better scores on the Parent and Teacher ADHD Rating Scale (Akhondzadeh et al., 200452 children aged 6-14 with ADHD were randomized to zinc glycinate 15 mg/day or placebo for 13 weeks. For the first 8 weeks, they only took zinc then for the last 5 weeks they also took d-amphetamine. The optimal absolute mg/day amphetamine dose with zinc was 43% lower than with placebo (Arnold et al., 2011).

Copper is an essential trace mineral that plays an active role in the synthesis of dopamine and norepinephrine. However, excess copper can manifest as displays of aggression, hyperactivity, insomnia, and anxiety. Elevated copper levels can also cause low zinc levels and reduce the efficacy of medications commonly used to treat ADHD.

Copper may affect ADHD through its role in antioxidant status. Copper/Zinc superoxide dismutase (SOD-1) is a key enzyme in our antioxidant defense system. Both copper and zinc participate in SOD enzymatic activities that protect against free radical damage. In a study on 22 ADHD children and 20 controls, serum Copper/Zinc SOD levels of ADHD children were significantly lower in individuals with high serum copper when compared to controls. It is also hypothesized that excess copper can damage dopamine brain cells by destroying antioxidant defenses, such as lowering Copper/Zinc SOD levels (Russo, 2010).

In a randomized controlled trial on 80 adults with ADHD, lower baseline copper levels were associated with better response to treatment with a vitamin-mineral supplement (Rucklidge et al., 2014). Unfortunately, even copper levels that are considered normal can negatively affect cognition. In a group of 600 adolescents with normal copper levels, blood copper was associated with decreased sustained attention and short-term memory (Kicinski et al., 2015).

Magnesium is part of 300 enzymes that utilize ATP (cellular energy) and is important for nerve transmission. It is involved in the function of the serotonin, noradrenaline, and dopamine receptors. Magnesium has been progressively declining in our food supply due to increased consumption of processed foods. The use of medications, presence of stress, and caffeine and soft drink consumption also deplete magnesium, and it is estimated that 50% of Americans are deficient in magnesium (Mosfegh et al., 2009).

Symptoms of magnesium deficiency include irritability, difficulty with concentration, insomnia, depression, and anxiety. A prospective population-based cohort of over 600 adolescents at the 14- and 17-year follow-ups found that higher dietary intake of magnesium was significantly associated with reduced externalizing behaviors (attention problems, aggressiveness, delinquency) (Black et al., 2015). Because up to 95% of those with ADHD are deficient in magnesium, almost all ADHD children can benefit from magnesium supplementation (Kozielec & Starobrat-Hermelin, 1997).

In a recent study on 25 patients with ADHD aged 6-16, 72% of children were deficient in magnesium and there was a significant correlation between hair magnesium, total IQ, and hyperactivity. The magnesium deficient children were randomized to magnesium supplementation 200 mg/day plus standard medical treatment or to standard medical therapy alone for 8 weeks. Those taking magnesium saw a significant improvement in hyperactivity, impulsivity, inattention, opposition, and conceptual level while those taking medication alone did not see these improvements (El Baza et al., 2015).

Supplements of magnesium plus vitamin B6, which increases magnesium absorption, have shown promise for reducing ADHD symptoms. One study on 52 children with ADHD found that 58% had low red blood cell magnesium levels. All the children were given preparations of magnesium plus vitamin B6 100 mg/day for a period of 1 to 6 months. In all patients, physical aggression, instability, attention at school, muscle rigidity, spasms, and twitching were improved. One of the treated children was a six-year old identified as “J”. Initially, J suffered from aggressiveness, anxiety, inattention, and lack of self-control. After taking magnesium supplements, he reported better sleep and concentration and no methylphenidate was needed (Mousain-Bosc et al., 2004). A later study by the same researchers also found that 40 children with ADHD had significantly lower red blood cell magnesium values than control children. Likewise, a magnesium-vitamin B6 regimen for at least 2 months significantly improved hyperactivity, aggressiveness, and school attention. The researchers concluded, “As chronic magnesium deficiency was shown to be associated to hyperactivity, irritability, sleep disturbances, and poor attention at school, magnesium supplementation as well as other traditional therapeutic treatments, could be required in children with ADHD” (Mousain-Bosc et al., 2006). In a larger study of 122 children with ADHD aged 6-11, 30 days of magnesium-vitamin B6 supplementation led to improved anxiety, attention, and hyperactivity. On a battery of tests, magnesium treatment increased attention, work productivity, task performance, and decreased the proportion of errors. The EEG of treated children showed positive changes as well, with brain waves significantly normalizing (Nogovitsina & Levitina, 2007).

There has also been a considerable amount of research illustrating the symbiotic, bidirectional relationship between the brain and the gut, and animal studies have demonstrated how certain strains of bacteria, or lack thereof, can alter cognitive and emotional processes. In the presence of dysbiosis, where “bad” bacteria outnumber the “good,” harmful strains of bacteria can proliferate and cause behavioral disturbances.

HPHPA is a harmful byproduct of some strains of the bacterium Clostridium that can disrupt the normal gut environment. Elevated urinary levels are commonly seen in ADHD children, especially those with poor response to stimulants. HPHPA inhibits the conversion of dopamine to norepinephrine. This causes dopamine to accumulate, resulting in decreased attention and focus. A patient should especially be tested for HPHPA if he or she experiences stimulant side effects such as irritability, agitation, or anxiety. ADHD medications work by increasing dopamine. But high HPHPA levels prevent the breakdown of dopamine, exacerbating symptoms. HPHPA must be cleared before medications will be helpful. Probiotics, good bacteria found in fermented food such as yogurt, or antibiotics can be used to lower HPHPA.

Intestinal overgrowth of Candida yeast is seen in some children with ADHD, mostly in those with a diet high in sugar that feed Candida, or in those who have received many rounds of antibiotics for recurrent ear infections. Antibiotics are effective at resolving infections by eradicating all bacteria, including the good bacteria. An early study found that children with the greatest history of ear infections (and presumably the greatest frequency of antibiotic use) had an increased chance for developing hyperactivity later (Hagerman & Falkenstein, 1987). Toxins produced by Candida can enter the bloodstream and then enter the brain where they can cause changes leading to hyperactivity and poor attention span. Fortunately, the presence of HPHPA and other yeast overgrowth can be easily detected with an organic acids test or with a stool sample. Candida can be treated with probiotics, antifungal foods (e.g. garlic, oregano, ginger), and a lower sugar diet. In some cases, a regimen of antibiotics and probiotics can be useful in reestablishing a healthy gut flora.

Nutritional augmentation strategies are frequently used as part of the integrative clinician’s toolbox to treat behavioral disorders in children. It is important for healthcare providers to collaborate and communicate with caregivers of children with behavioral disorders to discern whether other complementary therapies could be incorporated into treatment. By carefully assessing a patient’s whole health history and conducting appropriate laboratory testing, providers can make informed treatment recommendations that is tailored specifically for the individual.


References

Akhondzadeh, et al (2004). Zinc sulfate as an adjunct to methylphenidate for the treatment of attention deficit hyperactivity disorder in children: A double blind and randomized trial ISRCTN64132371. BMC Psychiatry, 4, 9.

Arnold et al. (1990). Does hair zinc predict amphetamine improvement of ADD/hyperactivity? The International Journal of Neuroscience, 50(1-2), 103-7.

Arnold et al. (2005). Serum zinc correlates with parent- and teacher- rated inattention in children with attention-deficit/hyperactivity disorder. Journal of Child and Adolescent Psychopharmacology, 15(4), 628-36.

Arnold et al. (2011). Zinc for attention-deficit/hyperactivity disorder: Placebo-controlled double-blind pilot trial alone and combined with amphetamine. Journal of Child and Adolescent Psychopharmacology, 21(1), 1-19.

Bilici et al. (2004). Double-blind, placebo-controlled study of zinc sulfate in the treatment of attention deficit hyperactivity disorder. Progress in Neuropsychopharmacology & Biological Psychiatry, 28(1), 181-190.

Black et al. (2015). Low dietary intake of magnesium is associated with increased externalising behaviours in adolescents. Public Health Nutrition, 18(10), 1824-30.

Elbaz et al. (2016). Magnesium, zinc and copper estimation in children with attention deficit hyperactivity disorder (ADHD). Egyptian Journal of Medical Human Genetics, Egyptian Journal of Medical Human Genetics, in press.

El Baza et al. (2016). Magnesium supplementation in children with attention deficit hyperactivity disorder. Egyptian Journal of Medical Human Genetics, 17(1), 63-70.

Hagerman & Falkenstein. (1987). An Association Between Recurrent Otitis Media in Infancy and Later Hyperactivity. Clinical Pediatrics, 26(5), 253.

Kicinski et al. (2015). Neurobehavioral function and low-level metal exposure in adolescents. International Journal of Hygiene and Environmental Health, 218(1), 139-146.

Kozielec & Starobrat-Hermelin. (1997). Assessment of magnesium levels in children with attention deficit hyperactivity disorder (ADHD). Magnesium Research: Official Organ Of The International Society For The Development Of Research On Magnesium, 10(2), 143-148.

Moshfegh et al. (2009). What We Eat in America, NHANES 2005–2006: Usual Nutrient Intakes from Food and Water Compared to 1997 Dietary Reference Intakes for Vitamin D, Calcium, Phosphorus, and Magnesium. U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA.

Mousain-Bosc et al. (2004). Magnesium VitB6 intake reduces central nervous system hyperexcitability in children. Journal Of The American College Of Nutrition, 23(5), 545S-548S.

Mousain-Bosc et al. (2006). Improvement of neurobehavioral disorders in children supplemented with magnesium-vitamin B6. I. Attention deficit hyperactivity disorders. Magnesium Research: Official Organ Of The International Society For The Development Of Research On Magnesium, 19(1), 46-52.

Nogovitsina & Levitina. (2007). Neurological aspects of the clinical features, pathophysiology, and corrections of impairments in attention deficit hyperactivity disorder. Neuroscience and Behavioral Physiology, 37(3), 199-202.

Oner et al. (2010). Effects of Zinc and Ferritin Levels on Parent and Teacher Reported Symptom Scores in Attention Deficit Hyperactivity Disorder. Child Psychiatry and Human Development, 41(4), 441-447.

Rucklidge et al. (2014). Moderators of treatment response in adults with ADHD treated with a vitamin–mineral supplement. Progress in Neuropsychopharmacology & Biological Psychiatry, 50, 163-171.

Russo, A. (2010). Decreased Serum Cu/Zn SOD Associated with High Copper in Children with Attention Deficit Hyperactivity Disorder (ADHD). Journal of Central Nervous System Disease, 2, 9-14.

Shin et al. (2014). The Relationship between Hair Zinc and Lead Levels and Clinical Features of Attention-Deficit Hyperactivity Disorder. Journal of the Korean Academy of Child and Adolescent Psychiatry, 25(1), 28-36.

Toren et al. (1996). Zinc deficiency in attention-deficit hyperactivity disorder. Biological Psychiatry, 40(12), 1308-1310.

Üçkardeş et al. (2009). Effects of zinc supplementation on parent and teacher behaviour rating scores in low socioeconomic level Turkish primary school children. Acta Paediatrica, 98(4), 731-736.

Yorbik et al. (2008). Potential effects of zinc on information processing in boys with attention deficit hyperactivity disorder. Progress in Neuropsychopharmacology & Biological Psychiatry, 32(3), 662-667.

Immunodeficiency, gastrointestinal Candidiasis, wheat and dairy sensitivity, abnormal urine arabinose, and autism: a case study

William Shaw, PhD

Abstract

A child with autism was found to have complete IgA deficiency (serum IgA < 6 mg/dL; normal 33-235 mg/dL), Candidiasis of the gastrointestinal tract based on evaluation of stool testing and elevated urine arabinose, and elevated serum antibodies to wheat and dairy products. The pretreatment urinary arabinose concentration (341 mmol/mol creatinine in this child was nearly six times the mean value (60.4 mmol/mol creatinine, n=20) of normal children and over ten times the median value (31.0 mmol/mol creatinine) of normal controls. After antifungal therapy for four months, the urine was retested. At that time the urine arabinose was measured at 51 mmol/mol creatinine, a value only 15% of the baseline sample. Restriction of wheat and dairy products from the diet and antifungal therapy led to a significant decrease in autistic behaviors and increased rate of learning. The Childhood Autism Rating Scale (CARS), an observational measure of various aspects of autism, for the child has decreased from a rating of 43 (severely autistic) prior to introduction of these therapies to a value of 29 (non-autistic) after therapy.

Introduction

Studies done by the late Reed Warren Ph.D. at Utah State University and others indicate that most children with autism have a substantial immune abnormality of some type (1-20). Kontstantareas and Homatidis (21) at the University of Guelph in Ontario, Canada found a high correlation between the prevalence of ear infections and the incidence of autism. They found that the earlier the child had an ear infection, the more likely that child had a more severe form of autism. They also found that increased incidence of ear infections was associated with a more severe rather than a mild form of autism. Candida infection has been reported as a consequence of frequent antibiotic usage in both humans and animals (22-30) and an abnormal increase in the sugar arabinose probably from Candida has been reported in urine samples of two siblings with autism (31). However, Candida infection may also be common in children with immunodeficiencies who do not have an unusually high number of infections treated with antibiotics. The pattern of gastrointestinal Candida overgrowth, immunodeficiency, metabolic disorder and autism is well illustrated in the medical history of the child evaluated by us.

Previous medical evaluation

The child evaluated is a five-year-old Caucasian male with a normal birth at term and normal apgar scores. Newborn metabolic screens for phenylketonuria, hypothyroidism, galactosemia, and sickle-cell disease were within normal limits. Both parents are college graduates; both parents are considered socially well adjusted. The maternal grandmother suffered from multiple sclerosis and is now deceased. The maternal grandfather died secondary to viral cardiomyopathy; as a child he did not speak until three years of age but then talked and developed normally. The paternal grandparents are in good health.

A pediatric ophthalmologist evaluated the child at six months of age for intermittent crusting and tearing of the left eye, which was non-responsive to antibiotic drops. The patient had surgery for the blocked tear-duct and a possible undescended testicle at 16 months. Exploratory surgery did not locate the missing testicle; the patient was put on prophylactic antibiotics after surgery. Up to the age of three years, the patient had had only one or two ear infections treated by antibiotics, a couple of colds, and an upper respiratory infection. Immunizations were all on schedule. A routine physical examination at 15 months of age assessed development as normal although parents expressed concerns about lack of speech. The MMR vaccine was administered at this checkup. Assessment by the pediatrician at 18 months was "healthy 1.5 year old" who "does not need to return until 2 years of age." Deficiency of expressive language was noted in the medical record but the parents were not advised to seek additional consultation.

At a pediatric evaluation at 2 years of age, lack of expressive language (only 5 words) was again noted but no follow-up was recommended. At a pediatric evaluation at 2.5 years of age, no expressive language was noted and the child was referred to a hearing and speech clinic for evaluation. Diet was noted to consist of bread, pancakes, milk, peanut butter, and chicken. He was noted to always have loose stools. The subsequent hearing evaluation revealed normal hearing but recommended a developmental assessment of the child. Three months later at the age of 27 months, the child was diagnosed with autism by a developmental pediatrician at a university autism clinic using DSM-IV diagnostic criteria; developmental age was assessed as at the 19-20 month level. At this exam, otitis media was diagnosed and treated with Amoxicillin. A MRI scan of the head revealed some atrophy of the frontotemporal lobe. EEG and fragile X chromosome studies were normal. The child was seen by a second university autism clinic in another state, which confirmed the original diagnosis. The parents of the child were referred to support groups, to speech therapists, and to special schools for education and behavioral modification but were not referred for any evaluation of the child's immune or gastrointestinal function.

When the child was 4.75 years of age, the parents decided to embark on additional biochemical assessments of their child including allergy assessment, routine chemistry and hematology, evaluation of stool microorganisms, evaluation of immune function, and urine organic acid testing.

Comprehensive food allergy testing for 96 foods was performed using IgG specific enzyme linked immunoassay. The following allergens were positive by IgG-specific enzyme linked immunoassay: barley, gluten, wheat, bran, cow's milk, cheeses (cheddar, cottage, and Swiss), beef, grapefruit, orange, peanut, soybean, and sugar. The IgA endomysial antibody test, which is considered to be specific for celiac disease, was negative in this child.

Normal serum values were found for all of the following: glucose, urea nitrogen, creatinine, total protein, albumin, total bilirubin, alkaline phosphatase, AST, ALT, LDH, calcium, phosphorus, blood lead, sodium, potassium, chloride, bicarbonate, uric acid, triglycerides, cholesterol, anion gap, thyroxine, antinuclear antibodies, thyrotropin (highly sensitive), iron, copper, magnesium, cortisol, zinc, and ferritin. White cell count was slightly low (4900/mm3); normal: 5500-15,500/mm.3 Hemoglobin and hematocrit were normal. The white cell differential was normal except for a slight elevation of atypical lymphocytes. The absolute number and percentage of CD3, CD4, and CD8 cells, evaluated by flow cytometry were all within normal limits.

Analysis of serum immunoglobulins revealed normal values for serum IgG, IgM, IgE, and IgG subclasses but undetectable values for serum IgA (Table 1). Stool analysis revealed a 4+ overgrowth of Candida parapsilosis; normal is 0 and the highest possible overgrowth is 4+. Antifungal sensitivity of the organism indicated sensitivity to fluconazole, itraconazole, nystatin, and ketoconazole. Bacteria in the stool sample usually considered beneficial were Lactobacillus (2+) and Bifidobacteria (4+). Stool analysis also revealed 3+ levels of gamma streptococci and 4+ hemolytic E. coli. An evaluation of a urine sample by gas chromatography-mass spectrometry as described previously (31) taken at the same time indicated significant increases of the sugar arabinose as the major abnormality; there were no abnormalities associated with any recognized inborn error of metabolism.

Therapy

Because of elevated Candida in the stool sample, indicating a gastrointestinal yeast overgrowth, the child was placed on 100,000 Units nystatin four times a day plus alternating weeks of Nizoral or Diflucan (2 mg/kg) and was also placed on a gluten and casein free diet approximately two months after beginning antifungal therapy. Both dietary and antifungal therapies are continuing five months later. The pretreatment urinary arabinose concentration (341 mmol/mol creatinine in this child was nearly six times the mean value (60.4 mmol/mol creatinine, n = 20) of normal children and over ten times the median value (31.0 mmol/mol creatinine) of normal controls. After antifungal therapy for four months, the urine was retested. At that time the urine arabinose was measured at 51 mmol/mol creatinine, a value only 15% of the baseline sample. With two additional months of antifungal treatment, the urine arabinose value decreased to 26 mmol/mol creatinine. A follow-up stool test indicated the absence of Candida in the sample.

Results of therapeutic interventions

The mother of the child reports a significant increase in eye contact, a significant decrease in self-stimulatory behavior, and increased use of spontaneous language shortly after beginning antifungal therapy. After beginning the casein and gluten free diet, the mother reports the child was able to follow three step verbal directions versus only one step directions previously. The mother also reported increased learning speed in the schooling program, increased verbal labeling, and increased spontaneous verbal initiations. The score for the child on the Childhood Autism Rating Scale (CARS), an observational measure of various aspects of autism has decreased from a rating of 43 (severely autistic) prior to introduction of these therapies to a value of 29 (non-autistic) after therapy. Cutoff for autism is 30 or above. The child is now considered by the assessment team at the state university autism clinic to be a high-functioning individual with autism. The child can now parallel play with other children in class, demonstrates an interest in peers, shares toys, and is engaging in some imaginative play.

Discussion

Selective IgA deficiency
The most striking laboratory abnormality of this child is the absence of detectable IgA. IgA is the antibody that is involved with protection of the lining of the nasal passages and intestinal lining from microorganisms. Secretory IgA or sIgA is a special form of the IgA antibody that is secreted to protect the mucosa, which is the lining of the intestinal tract. Secretory IgA on a stool sample from this child was also noted as deficient. Secretory IgA is apparently secreted by the gall bladder and then trickles down the bile ducts into the small intestine. Some children with autism such as this one have very low or even completely absent levels of IgA (1,20); in such cases there is probably also a deficiency of a secretory IgA since secretory IgA is derived from IgA.

This extremely common immunodeficiency occurs in 1 in 600-1000 persons of European ancestry (32). The causes of IgA deficiency are not completely known. There are some cases in which the deficiency runs in families while in other cases it does not. It has been reported in association with abnormalities of chromosome 18, but most individuals with IgA deficiency have no detectable chromosomal abnormalities (32). IgA deficiency may also be caused by drugs or viral infection (rubella, cytomegalovirus, toxoplasmosis) and may be also be associated with intrauterine infections. Patients with IgA deficiency are usually deficient in both subtypes of IgA, IgA1 and IgA2.

In Gupta's study (20), 20% of the children with autism had a deficiency of IgA and 8% lacked it completely. Reed Warren and his colleagues (1) also found that 20% of individuals with autism had low serum IgA compared with none of the normal controls. Thus, complete IgA deficiency in autism is somewhere between 48 and 80 times higher in the autism population compared to a normal Caucasian population.

IgA replacement therapy cannot be used currently because the short half-life of IgA would make it an extremely expensive therapy. However, bovine colostrum, which is commercially available, is high in IgA and might be considered as a possible therapy for IgA-deficient patients. IgG therapy can be used with patients with low IgA values. If the IgA values are so low that they cannot even be detected, however, giving IgG therapy is too risky. It is possible that the immunodeficient person's body would produce antibodies against IgA present in gamma globulin, causing potentially fatal anaphylactic shock.

The clinical consequences of IgA deficiency range from severe systemic infection to a perfectly healthy state. Many IgA-deficient persons are never aware of their antibody deficiency while others may have recurrent infections, allergic diseases, and autoimmune diseases (32). This child with autism had significant Candidiasis of the gastrointestinal tract despite the fact that the child had only two courses of antibiotics during his lifetime. Thus, intestinal Candidiasis following antibiotic therapy appears to be a much greater risk in a child with immunodeficiency. The decrease in symptoms of autism after antifungal therapy and gluten and casein restriction has been noted in many children with autism (33). (The authors are aware of three children with autism diagnosed at university autism centers who are now considered symptom-free after antifungal treatment and gluten and casein restriction.)

The child being presented was never considered a "sickly" child by the parents. It is possible that the difficult to treat eye crusting may have been related to the IgA deficiency since IgA is secreted in tears, saliva, and gastric juice; the deficient IgA in the tears may have led to a greater number of eye infections. The occurrence of multiple sclerosis in the maternal grandmother might be of significance but she was never evaluated for IgA deficiency. The remarkable spectrum of clinical manifestations of this immunodeficiency may be related to variations in the ability to replace IgA antibodies in the mucous secretions with IgM antibodies. IgG2 and IgG4 subclass deficiencies are common in IgA deficiency but were not present in this individual.

IgA Deficiency and Celiac Disease

The incidence of selective IgA deficiency is 10 times higher in patients with celiac disease compared to the general population (34). The diagnosis of celiac disease cannot be excluded in an IgA deficient child because the endomysial antibody test uses IgA antibody specificity and may yield false negative results in such cases (35) so the possibility that the child may have celiac disease cannot be excluded. The parents elected to place the child on a wheat and dairy-free diet based on the ELISA-allergy test results so a diagnosis of celiac disease by intestinal biopsy would not be valid for this child. Positive IgG antibodies to gluten were found in 100% of IgA-deficient persons with biopsy proven celiac disease but who were negative by the endomysial antibody test (35). Most children with autism are sensitive to both gluten, the major protein in wheat and barley, and to casein, the major protein in cow's milk (36-40). Elevation of IgG antibodies to wheat, barley, and several dairy products is common in autism even though most children with autism do not have celiac disease (36-40). Behavioral improvements after restriction of gluten and casein are attributed to a decrease in peptides (casomorphin and gliadorphin) derived from gluten and casein that have central nervous system opioid effects (36-40).

Candidiasis and abnormal arabinose: possible implications in brain structure and function

The exact biochemical role of elevated arabinose is unknown but a closely related sugar alcohol, arabitol, has been used as a biochemical indicator of invasive candidiasis (41-43). We have never found elevated arabitol in thousands of urine samples tested, including many samples with elevated arabinose and high yeast counts in the stool. Elevated arabinose in the urine of two brothers with autism was first reported by Shaw et al. in 1995 (31) and has since then has been reported to be prevalent in urine samples from people with autism (33); values as high as 4000 mmol/mol creatinine have been found in children with autism (unpublished data). We have found arabitol but not arabinose in the culture media of multiple isolates of Candida albicans isolated from stool samples of autistic children (unpublished data). Presumably elevated arabitol in the urine may only occur in systemic rather than gastrointestinal Candidiasis since arabitol in portal blood is converted to arabinose in the liver. Arabinose in the urine decreased markedly after antifungal therapy, concomitantly with an elimination of stool Candida. Arabinose, a sugar aldehyde or aldose reacts with the epsilon amino group of lysine in a wide variety of proteins and may then form cross-links with arginine residues in an adjoining protein (44), thereby cross-linking the proteins and altering both biological structures and functions of a wide variety of proteins (Figure 1) including proteins involved in the interconnection of neurons. Decreased clinical symptoms of autism after antifungal treatment would be due to decreased arabinose and pentosidine formation, resulting in fewer random neural connections (neural noise) and increased numbers of neural connections that are oriented to the child's environment.

This adduct of arabinose, lysine, and arginine is called a pentosidine (Figure 1). The epsilon amino group of lysine is a critical functional group of many enzymes to which pyridoxal (vitamin B-6), biotin, and lipoic acid are covalently bonded during coenzymatic reactions (45); the blockage of these active lysine sites by pentosidine formation may cause functional vitamin deficiencies even when nutritional intake is adequate. In addition, this epsilon amino group of lysine may also be important in the active catalytic site of many enzymes. Protein modification caused by pentosidine formation is associated with crosslink formation, decreased protein solubility, and increased protease resistance. The characteristic pathological structures called neurofibrillary tangles associated with Alzheimer disease contain modifications typical of pentosidine formation. Specifically, antibodies against pentosidine react strongly to neurofibrillary tangles and senile plaques in brain tissue from patients with Alzheimer disease (46). In contrast, little or no reaction is observed in apparently healthy neurons of the same brain.

Thus, it appears that the neurofibrillary tangles of Alzheimer's disease may be caused by the pentosidines. The modification of protein structure and function caused by arabinose could account for the biochemical and insolubility properties of the lesions of Alzheimer disease through the formation of protein crosslinks. Similar damage to the brains of autistic children might also be due to the pentosidines; neurofibrillary tangles have also been reported in the brain tissue of an individual with autism (47). Improvement of symptoms of autism after antifungal therapy might be mainly due to a decrease in the concentration of arabinose and a concomitant decrease in the production of pentosidine cross-links. Since pyridoxal (vitamin B-6) reacts with the same critical epsilon amino group of lysine, it is possible that the beneficial effects of vitamin B-6 in autism reported in multiple studies (48) may be mediated by prevention of further pentosidine formation. Analysis of brain tissue of people with autism for increased brain pentosidines could be invaluable in the confirmation of this hypothesis.

Women with vulvovaginitis due to Candida were found to have elevated arabinose in the urine (49); restriction of dietary sugar brought about a dramatic reduction in the incidence and severity of the vulvovaginitis. Thus, one of the mechanisms of action of antifungal drug therapy for autism might be to reduce the concentration of an abnormal carbohydrate produced by the yeast that can not be tolerated by the child with defective pentose metabolism or an inability to remove harmful pentosidines. Arabinose tolerance tests should be able to rapidly determine if such biochemical defects are present in children with autism.

A Model for Autism

The success of Gupta (20) in treating the autistic symptoms of children with autism with gamma globulin therapy indicates an immune abnormality in autism. Based on these findings and our findings of abnormal arabinose and other organic acids in other children with autism (31,33), we propose the following model for autism (Figure 2). According to this model, immune deficiencies, which may be genetic or acquired, lead to an increased frequency of infections, which in the United States are almost always treated with broad-spectrum oral antibiotics that result in intestinal yeast overgrowth. Furthermore, many isolates of Candida albicans produce gliotoxins (50,51) and other immunotoxins (52,53) which impair the immune system and increase the likelihood of additional infections which lead to additional antibiotic usage and greater proliferation of yeasts and antibiotic-resistant bacteria, setting up a vicious cycle. These organisms produce high amounts of abnormal carbohydrates such as arabinose and Krebs cycle analogs such as citramalic and tartaric acids (31).

There is no inherent reason that dramatic biochemical changes in multiple biochemical systems caused by microorganisms would not be expected to alter brain structure and function. In PKU, correction of the metabolic defect by restriction of phenylalanine during infancy allows for normal development; negative impacts on development occur if dietary intervention occurs too late. If abnormally elevated metabolites cause autism, then it is reasonable to think that elevations of these compounds would have maximum negative impact during periods of critical brain growth and development. As in PKU, metabolic intervention in autism might only be possible in the early stages of the disorder before the brain has matured. The differences in severity of disease and individual differences in symptoms might be due to different combinations of metabolites, how elevated they are, the duration of the elevation, the age at which the metabolites become abnormally elevated, and the susceptibility of the individual developing nervous system to the different microbial metabolites.

Some children with autism have a history of frequent infections: two different parents of children with autism indicated to the authors that their children had over 50 consecutive infections (predominantly otitis media) treated with antibiotics. However, some children with autism such as the child presented here did not have excessive use of oral antibiotics and was not considered to be a "sickly child" by the parents or attending physicians. In this child the underlying immune deficiency and two uses of antibiotics apparently led to a persistent yeast overgrowth of the intestinal tract.

Genetic immunodeficiencies proposed as the major genetic factors in autism

Ritvo et al. (54) found a concordance rate for autism of 23.5% in dizygotic twins and 95.7% in monozygotic twins, indicating a strong genetic basis for autism. However, the results of the Stanford autism genetics study of 90 families affected by autism (55) indicate " that there are no genes with a major effect for autism. That is, our analyses show that autism is almost surely not a simple single major gene disorder, such as Huntington disease. Rather, the analyses from these 90 families indicate that there are likely to be a relatively large number of different genes related to the susceptibility for autism, each with a minor effect." We suspect that many of these "relatively large number of genes" are those that regulate the immune system. We have been impressed with the large number of studies that have indicated a wide number of abnormalities of the immune system in autism (1-20) including IgG deficiency, IgA deficiency, IgG subclass deficiency, myeloperoxidase deficiency (a genetic defect in an enzyme of the leukocytes that produces hypochlorite ion to kill yeast), reduced natural killer cell activity, markedly elevated serum levels of the cytokines interleukin-12 and interferon-gamma, increased anti-myelin and serotonin receptor antibodies, increased DR+ T cells, and a deficiency in complement C4b. In addition, some immune abnormalities in autism have been linked to adverse reactions to vaccinations (56). The two brothers with autism in which abnormal arabinose and abnormal organic acids were first reported (31) both had abnormally low concentrations of serum IgG. Autism has also been diagnosed in other children with defined inborn errors of metabolism such as biotinidase deficiency and isovaleric acidemia (Lombard, Personal Communication) in which yeast infections are common.

Efforts to locate a single autism gene would fail since any genetic factor that severely impairs the immune system may eventually lead to the proliferation of antibiotic-resistant yeasts and bacteria which then alter behavior of children at critical periods of development through the excretion of abnormal microbial metabolic products. Thus, autism appears to be a complex metabolic disorder involving immune deficiencies, autoimmune abnormalities, abnormal food sensitivities, and gastrointestinal microbial overgrowths that may result in altered human metabolism and protein function.

Figure 1. Reaction of arabinose from yeast with amino groups of lysine to form a Schiff base adduct. The rearranged Schiff base then reacts with a guanido group on an arginine residue of a second protein, resulting in two different proteins crosslinked through a pentosidine moiety.

Figure 2. Immunodeficiency model for autism. In this model, immunodeficiencies lead to antibiotic use that stimulates yeast overgrowth (primarily Candida) of the gastrointestinal tract. Certain strains of Candida produce immunosuppressant compounds called gliotoxins that further weaken the immune system and may lead to additional infections. Arabitol produced by Candida in the gastrointestinal tract is converted to arabinose by the liver. Elevated arabinose then leads to pentosidine formation, leading to increased neurofibrillary tangles in the brain.

Clinical References

  • 1. Warren R, Odell J, Warren W, Burger R, Maciulis A, Daniels W, Torres A. Immunoglobulin A deficiency in a subset of autistic subjects. J. Autism Develop Dis. 27:187-192,1997.

  • 2. Warren R, Margaretten N, Pace N, Foster A. Immune abnormalities in patients with autism. J. Autism Develop Dis. 16, 189-197, 1986.

  • 3. Warren R, Singh V, Cole P, Odell J, Pingree C, Warren L, DeWitt C, and McCullough M. Possible association of the extended MHC haplotvpe B44-SC30-DR4 with autism. Immunogenetics 36: 203-207, 1992.

  • 4. Warren R, Yonk J, Burger R, Odell J, Warren W. DR positive T cells in autism: association with decreased plasma levels of the complement C4B protein. Neuropsychobiology 31: 53-57, 1995.

  • 5. Singh, V, Warren, RP, Odell, JD, and Cole, P. Changes in soluble interleukin-2, interleukin-2 receptor, T8 antigen, and interleukin-I in the serum of autistic children. Clin. Immunol. Immunopath. 61: 448-455, 1991.

  • 6. Yonk LJ, Warren RP, Burger RA, Cole P, Odell JD, Warren WL, White E, Singh VK: CD4+ helper T cell depression in autism. Immunol Lett 25: 341-346, 1990.

  • 7. Abramason RK, Self S, Genco P, Smith N, Pendleton A, Valentine J, Wright HH, Cuccaro M, Powell D: The relationship between lymphocyte cell surface markers and serotonin in autistic probands (abstract). Am J Hum Genet 47(3):A45, 1990.

  • 8. Wood Frei B, Dennv D, Gaffney GR, O'DonneU T: Lymphocyte subsets and the interleukin-2 system in autistic children (abstract). Sci Proc Annu Meet Am Acad Child Adolesc Psychiatry 7: 53, 1991.

  • 9. Plioplys AV, Greaves A, Kazemi K, Silverman E. Lymphocyte function in autism and Rett syndrome. Neuropsychobiology 7: 12-16, 1994.

  • 10. Stubbs EG, Crawford ML, Burger DR, Vanderbark AA: Depressed lymphocyte responsiveness in autistic children. J Autism Child Schizophr 7:49-55, 1977.

  • 11. Warren R, Yonk L, Burger R, Cole P, Odell J, Warren W, White E, Singh V. Deficiency of suppressor-inducer (CD4+CD45R+) T cells in autism. Immunol Invest 19:245-251,1990.

  • 12. Singh VK, Fudenberg HH, Emerson D, Coleman M: Immunodiagnosis and immunotherapy in autistic children. Ann NY Acad Sci 540:602-604, 1988.

  • 13. Ferrari P, Marescot M, Moulias R, Bursztejn C, Deville-Chambrolle A, Thiolett M, Lesourd B, Braconnier A, Dreux C, Zarifian E. Immune status in infantile autism: Correlation between the immune status, autistic symptoms and levels of serotonin. Encephale 14: 339-344, 1988.

  • 14. Warren RP, Foster A, Margaretten NC: Reduced natural killer cell activity in autism. J Am Acad Child Psychol 26: 333-335, 1987.

  • 15. Warren PP, Singh VK, Cole P, Odell JD, Pingree CB, Warren WL, White E: Increased frequency of the null allele at the complement C4B locus in autism. Clin Exp Immunol 83: 438-440, 1991.

  • 16. Weizman A, Weizman R, Szekely GA, Wijsenbeek H, Livini E: Abnormal immune response to brain tissue antigen in the syndrome of autism. Am J Psychiatry 139:1462-1465,1982.

  • 17. Singh VK, Warren RP, Odell JD, Warren WL, Cole P: Antibodies to myelin basic protein in children with autistic behavior. Brain Behav Immunity 7: 97-103,1993.

  • 18. Plioplys AV, Greaves A, Kazemi K, Silverman E. Immunoglobulin reactivity in autism and Rett's syndrome. Dev Brain Dysfunct 7: 12-16, 1994.

  • 19. Todd R, Ciaranello R. Demonstration of inter- and intraspecies differences in serotonin binding sites by antibodies from an autistic child. Proc Nat Acad Sci 82:612-616, 1985.

  • 20. Gupta S., Aggarwal and Heads C. Dysregulated immune system in children with autism. Beneficial effects of intravenous immune globulin on autistic characteristics. Autism Develop Dis 26:439-452, 1996.

  • 21. Kontstantareas M and Homatidis S. Ear infections in autistic and normal children. J Autism and Dev Dis 17:585,1987.

  • 22. Guentzel M and Herrera C. Effects of compromising agents on candidosis in mice with persistent infections initiated in infancy. Infection and Immunity 35: 222-228,1982.

  • 23. Kennedy M and Volz P Dissemination of yeasts after gastrointestinal inoculation in antibiotic-treated mice. Sabouradia 21:27-33, 1983.

  • 24. Danna P, Urban C, Bellin E, and Rahal J. Role of Candida in pathogenesis of antibiotic-associated diarrhoea in elderly patients. Lancet 337: 511-14, 1991.

  • 25. Ostfeld E , Rubinstein E, Gazit E, Smetana Z. Effect of systemic antibiotics on the microbial flora of the external ear canal in hospitalized children. Pediat 60: 364-66, 1977.

  • 26. Kinsman OS, Pitblado K. Candida albicans gastrointestinal colonization and invasion in the mouse: effect of antibacterial dosing, antifungal therapy, and immunosuppression. Mycoses 32:664-74,1989.

  • 27. Van der Waaij D. Colonization resistance of the digestive tract--mechanism and clinical consequences. Nahrung 31:507-17, 1987.

  • 28. Samonis G and Dassiou M. Antibiotics affecting gastrointestinal colonization of mice by yeasts. Chemotherapy 6: 50-2, 1994.

  • 29. Samonis G, Gikas A, and Toloudis P. Prospective evaluation of the impact of broad-spectrum antibiotics on the yeast flora of the human gut. European Journal of Clinical Microbiology & Infectious Diseases 13:665-7, 1994.

  • 30. Samonis G, Gikas A, and Anaissie E. Prospective evaluation of the impact of broad-spectrum antibiotics on gastrointestinal yeast colonization of humans. Antimicrobial Agents and Chemotherapy 37: 51-53, 1993.

  • 31. Shaw W, Kassen E, and Chaves E. Increased excretion of analogs of Krebs cycle metabolites and arabinose in two brothers with autistic features. Clin Chem 41:1094-1104, 1995.

  • 32. Butler J and Cooper M. Antibody deficiency diseases. In The Metabolic Basis of Inherited Disease. Sixth Edition. Volume II. Edited by C. Scriver et al. Pgs 2683-2696,1989, McGraw Hill, NY

  • 33. Shaw W, Semon B, Rimland B, Scott P, Lewis L, and Seroussi K. Biological Treatments for Autism and PDD. Sunflower Press, Overland Park, KS, USA, 1998.

  • 34. Thomas, HC and Jewell, DP. Gastrointestinal Immunology. Oxford: Blackwell Scientific Publications. Pgs 100-120, 1979.

  • 35. Cataldo F, Marino V, Bottaro G, Greco P, Ventura A. Celiac disease and selective immunoglobulin A deficiency. J Pediatr 131:306-308, 1997.

  • 36. Reichelt K, Ekrem J, Scott H. Gluten, milk proteins and autism: dietary intervention effects on behavior and peptide secretion. Journal of Applied Nutrition 42: 1-11, 1990.

  • 37. Reichelt K, Hole K, Hamberger A, Saelid G, Edminson PD, Braestrup CB, Lingjaerde O, Ledaal P, Orbeck H. Biologically active peptide-containing fractions in schizophrenia and childhood autism, Adv Biochem Psychopharmacol 28: 627-43, 1981.

  • 38. Reichelt K, Knivsberg A, Lind G, Nodland M. Probable etiology and possible treatment of childhood autism. Brain Dysfunction 4: 308-19, 1991.

  • 39. Reichelt K, Knivsberg A, Nodland M, Lind G. Nature and consequences of hyperpeptiduria and bovine casomorphins found in autistic syndromes. Developmental Brain Dysfunction 7: 71-85, 1994.

  • 40. Reichelt K, Saelid G, Lindback T, Boler JB. Child autism: a complex disorder. Biological Psychiatry 21: 1279-90, 1986.

  • 41. Kiehn T, Bernard E, Gold J, and Armstrong D. Candidiasis: detection by gas-liquid chromatography of D-arabinitol, a fungal metabolite, in human serum. Science 206: 577-580, 1979.

  • 42. Wong B, Brauer K, Clemens J, and Beggs S. Effects of gastrointestinal candidiasis, antibiotics, dietary arabinitol, and cortisone acetate on levels of the Candida metabolite D-arabinitol in rat serum and urine. Infect Immunol 58:283-288,1990.

  • 43. Roboz J and Katz R. Diagnosis of disseminated candidiasis based on serum D/L arabinitol ratios using negative chemical ionization mass spectrometry. J Chromatog 575: 281-286,1992.

  • 44. Sell D and Monnier V. Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem 264: 21597-21602, 1989.

  • 45. Mahler H and Cordes E. Biological Chemistry. Harper and Row, NY, 1966, pgs 322-375.

  • 46. Smith MA, Taneda S; Richey PL; Miyata S; Yan SD; Stern D; Sayre LM; Monnier VM; Perry G.. Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci USA 91: 5710-5714 , 1994.

  • 47. Hof PR, Knabe R; Bovier P; Bouras C. Neuropathological observations in a case of autism presenting with self-injury behavior. Acta Neuropathol (Berl) 82: 321-6, 1991.

  • 48. Rimland B. New hope for safe and effective treatments for autism. Autism Research Review International 8: 3,1994.

  • 49. Horowitz B, Edelstein S, and Lipman L. Sugar chromatography studies in recurrent vulvovaginitis. J Reproductive Medicine 29:441-443,1984.

  • 50. Shah D and Larsen B. Identity of a Candida albicans toxin and its production in vaginal secretions. Med Sci Res 20:353-355,1992.

  • 51. Shah D and Larsen B. Clinical isolates of yeast produce a gliotoxin-like substance. Mycopathologia 116:203-208,1991.

  • 52. Podzorski R, Herron M, Fast D, Nelson R. Pathogenesis of candidiasis. Immunosuppression by cell wall mannan metabolites. Arch Surgery 124: 1290-1294,1989.

  • 53. Witkin, S. Defective immune responses in patients with recurrent candidiasis. Infections in Medicine. May / June pg 129-132,1985.

  • 54. Ritvo, E, Freeman B, Mason-Brothers A, Mo A, and Ritvo A. Concordance for the symptoms of autism in 40 pairs of afflicted twins. American J Psychiatry 142: 74-77,1985.

  • 55. Risch N, Myers R, Spiker D, Lotspeich L. The results of the Stanford Autism Genetics Project. Proceedings of the National Symposium of the Autism Society of America, Reno, NV, July 1998.

  • 56. A J Wakefield, S H Murch, A Anthony, J Linnell, D M Casson, M Malik, M Berelowitz, A P Dhillon, M A Thomson, P Harvey, A Valentine, S E Davies, J A Walker-Smith. Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children Lancet 1998; 351: 637-641.

OXALATES CONTROL IS A MAJOR NEW FACTOR IN AUTISM THERAPY

Test Implications for Yeast and Heavy Metals
William Shaw, Ph.D.

What are Oxalates?

Oxalate and its acid form oxalic acid are organic acids that are primarily from three sources: the diet, from fungus such as Aspergillus, Penicillium, and possibly Candida (1-9), and also from human metabolism (10).

Oxalic acid is the most acidic organic acid in body fluids and is used commercially to remove rust from car radiators. Antifreeze (ethylene glycol) is toxic primarily because it is converted to oxalate. Two different types of genetic diseases are known in which oxalates are high in the urine. The genetic types of hyperoxalurias (type I and type II) can be determined from the Organic Acids Test (OAT) done at The Great Plains Laboratory. Foods especially high in oxalates include spinach, beets, chocolate, peanuts, wheat bran, tea, cashews, pecans, almonds, berries, and many others. Oxalates are not found in meat or fish at significant concentrations. Daily adult oxalate intake is usually 80-120 mg/d; it can range from 44-1000 mg/d in individuals who eat a typical Western diet.  A complete list of high oxalate foods is available at  http://patienteducation.upmc.com/Pdf/LowOxalateDiet.pdf.

High oxalate in the urine and plasma was first found in people who were susceptible to kidney stones. Many kidney stones are composed of calcium oxalate. Stones can range in size from the diameter of a grain of rice to the width of a golf ball. It is estimated that 10% of males may have kidney stones some time in their life. Because many kidney stones contain calcium, some people with kidney stones think they should avoid calcium supplements. However, the opposite is true. When calcium is taken with foods that are high in oxalates, oxalic acid in the intestine combines with calcium to form insoluble calcium oxalate crystals that are eliminated in the stool. This form of oxalate cannot be absorbed into the body. When calcium is low in the diet, oxalic acid is soluble in the liquid portion of the contents of the intestine (called chyme) and is readily absorbed from the intestine into the bloodstream. If oxalic acid is very high in the blood being filtered by the kidney, it may combine with calcium to form crystals that may block urine flow and cause severe pain.

Such crystals may also form in the bones, joints, blood vessels, lungs, and even the brain (10-13). In addition, oxalate crystals in the bone may crowd out the bone marrow cells, leading to anemia and immunosuppression (13). In addition to autism and kidney disease, individuals with fibromyalgia and women with vulvar pain (vulvodynia) may suffer from the effects of excess oxalates (14,15).

Oxalate crystals may cause damage to various tissues. The sharp crystals may cause damage due to their physical structure and may also increase inflammation. Iron oxalate crystals may also cause significant oxidative damage and diminish iron stores needed for red blood cell formation (10). Oxalates may also function as chelating agents and may chelate many toxic metals such as mercury and lead. Unlike other chelating agents, oxalates trap heavy metals in the tissues.

Many parents who told me of adverse vaccine reactions of their children reported that their child was on antibiotics at the time of vaccination. Yeast overgrowth, commonly associated with antibiotic usage, might lead to increased oxalate production and increased combination with mercury, slowing mercury elimination if oxalates were so high that they deposited in the bones with attached mercury. It would be interesting to see if increased elimination of heavy metals occurs after oxalate elimination by antifungal therapy and low oxalate diet. In addition, oxalates from the diet or from yeast/fungus in the gastrointestinal tract bind calcium, magnesium, and zinc, perhaps leading to deficiencies even when dietary sources should be adequate.

 

Oxalates and Autism

Oxalates in the urine are much higher in individuals with autism than in normal children (Figure 1). As a matter of fact, 36% of the children on the autistic spectrum had values higher than 90 mmol/mol creatinine, the value consistent with a diagnosis of genetic hyperoxalurias while none of the normal children had values this high. 84% of the children on the autistic spectrum had oxalate values outside the normal range (mean ± 2 sd). None of the ± 2 sd).  None of the children on the autistic spectrum had elevations of the other organic acids associated with genetic diseases of oxalate metabolism, indicating that oxalates are high due to external sources.

As shown in the table, both mean and median values for urine oxalates are substantially higher  in autism compared to the normal population. As a matter of fact the mean oxalate value of 90.1 mmol/mol creatinine is equal to the lower cutoff value for the genetic hyperoxalurias. The median value in autism is six times the normal median value and the mean value in autism is five times the normal mean value.

 

A brand new diet is being extensively used to treat children with autism and other disorders. Researcher named Susan Owens discovered that the use of a diet low in oxalates markedly reduced symptoms in children with autism and PDD. For example, a mother with a son with autism reported that he became more focused and calm, that he played better, that he walked better, and had a reduction in leg and feet pain after being on a low oxalate diet. Prior to the low oxalate diet, her child could hardly walk up the stairs. After the diet, he walked up the stairs very easily. Many hundreds of children with autism throughout the world are now being placed on this diet with good results.

Benefits Reported By Parents Using Low Oxalate Diet

Improvements in gross and fine motor skills
Improvements in expressive speech
Better counting ability
Better receptive and expressive language
Increased imitation skills
Increased sociability
Speaking in longer sentences
Decreased rigidity
Better sleep

Reduced self-abusive behavior
Increased imaginary play
Improved cognition
Loss of bed wetting
Loss of frequent urination
Improved handwriting
Improved fine motor skills
Improvement in anemia

... and many others

How Can High Oxalates Be Treated?

Use antifungal drugs to reduce yeast and fungi that may be causing high oxalate. Children with autism frequently require years of antifungal treatment. I have noticed that arabinose, a marker used for years for yeast/fungal overgrowth on the Organic Acids Test (OAT) at The Great Plains Laboratory, is correlated with high amounts of oxalates (Table 2 and Figure 2) and arabinose has been found to be an important fuel for fungal oxalate production (5). Candida organisms have been found surrounding oxalate stones in the kidney (9).

Give supplements of calcium citrate to reduce oxalate absorption from the intestine. Citrate is the preferred calcium form to reduce oxalate because citrate also inhibits oxalate absorption from the intestinal tract. The best way to administer calcium citrate would be to give it with each meal. Children over the age of 2 need about 1000 mg of calcium per day. Of course, calcium supplementation may need to be increased if the child is on a milk-free diet. The most serious error in adopting the gluten-free, casein-free diet is the failure to adequately supplement with calcium.

Try N-Acetyl glucosamine to stimulate the production of the intercellular cement hyaluronic acid to reduce pain caused by oxalates (16).

Give chondroitin sulfate to prevent the formation of calcium oxalate crystals (17).

Vitamin B6 is a cofactor for one of the enzymes that degrade oxalate in the body and has been shown to reduce oxalate production (18).

Increase water intake to help to eliminate oxalates.

Excessive fats in the diet may cause elevated oxalate if the fatty acids are poorly absorbed because of bile salt deficiency. Non-absorbed free fatty acids bind calcium to form insoluble soaps, reducing calcium’s ability to bind oxalate and reduce oxalate absorption (19). If taurine is low in the Amino Acids Test, supplementation with taurine may help stimulate bile salt production (taurocholic acid), leading to better fatty acid absorption and diminished oxalate absorption.

Probiotics may be very helpful in degrading oxalates in the intestine. Individuals with low amounts of oxalate-degrading bacteria are much more susceptible to kidney stones (20). Both Lactobacillus acidophilus and Bifidobacterium lactis have enzymes that degrade oxalates (21).

Increase intake of essential omega-3 fatty acids, commonly found in fish oil and cod liver oil, which reduces oxalate problems (22). High amounts of the omega-6 fatty acid, arachidonic acid, are associated with increased oxalate problems (23). Meat from grain fed animals is high in arachidonic acid.

Take supplements of vitamin E, selenium, and arginine which have been shown to reduce oxalate damage (24, 25).

Undertake a low oxalate diet. This may be especially important if the individual has had Candida for long periods of time and there is high tissue oxalate buildup. There may be an initial bad reaction lasting several days to a week after starting the diet since oxalates deposited in the bones may begin to be eliminated as oxalates in the diet are reduced.

Evaluate vitamin C intake. Vitamin C can break down to form oxalates. However, in adults, the amount of oxalate formed did not increase until the amount exceeded 4 g of vitamin C per day (26). A large study of more than 85,000 women found no relation between vitamin C intake and kidney stones (27). In addition, an evaluation of 100 children on the autistic spectrum at The Great Plains Laboratory revealed that there was nearly zero correlation between vitamin C and oxalates in the urine (Table 2). Megadoses (more than 100 mg/Kg body weight per day) of vitamin C were shown to markedly reduce autistic symptoms in a double blind placebo controlled study (28) so any restriction of vitamin C needs to be carefully weighed against its significant benefits.

Oxalate Metabolism

In the genetic disease hyperoxaluria type I and in vitamin B-6 deficiency, there is a deficiency in the enzyme activity of alanine glyoxylate amino transferase (AGT), leading to the accumulation of glyoxylic acid. The high glyoxylic acid can then be converted to glycolate by the enzyme GRHPR or to oxalate by the enzyme LDH. Thus, glycolate, glyoxylate, and oxalate are the metabolites that are then elevated in the Organic Acids Test (OAT) in hyperoxaluria type I and in vitamin B-6 deficiency.

In the genetic disease hyperoxaluria type II, there is a deficiency in an enzyme (GRHPR) that has two biochemical activities:  glyoxylate reductase and hydroxypyruvic reductase. This enzyme converts glyoxylate to glycolate and glycerate to hydroxypyruvate. When this enzyme is deficient, glycerate cannot be converted to hydroxypyruvate and glyoxylate cannot be converted to glycolate. In this disease, glyoxylate is increasingly converted to oxalate and glycerate is also very elevated.

External sources of oxalates include ethylene glycol, the main component of antifreeze. Antifreeze is toxic mainly because of the oxalates formed from it. In addition, some foods also contain small amounts of ethylene glycol. Vitamin C (ascorbic acid or ascorbate) can be converted to oxalates but apparently the biochemical conversion system is saturated at low levels of vitamin C so that no additional oxalate is formed until very large doses (greater than 4 g per day) are consumed. It is interesting that fungi can also produce vitamin C which may explain why many children with autism have high vitamin C even though they do not take supplements containing vitamin C. The high correlation between arabinose and oxalates indicate that intestinal yeast/fungal overgrowth is likely the main cause for elevated oxalates in the autistic spectrum population. The deposition of oxalates in critical tissues such as brain and blood vessels, the oxidative damage caused by oxalate salts, and the deposition of oxalate mercury complexes in the tissues may all be important factors in the core etiology of autism.

  [Insert OAT Sample Test Result – Oxalate Section]
 

Oxalate Interconversions

Oxalic acid undergoes many conversions depending on the acidity of the environment in which it is present. The acidity of a water solution is usually indicated by a value called the pH. A very low pH like 0 or 1 indicates a very acidic solution while a pH of 13 or 14 would represent a very alkaline solution. A pH of 7 indicates a condition of neutrality. Blood has a pH of 7.4 which is very slightly alkaline. The pH of urine varies between 4.5 to 8 with an average of 6. Oxalic acid can lose a positively charged hydrogen ion or proton at a very low pH. The first pK value for oxalic acid (1.27) indicates the pH in which there are equal amounts of oxalic acid and its form missing a proton called monobasic oxalate. At a higher pH, the monobasic oxalate converts to a dibasic oxalate form with two negative charges. The second pK value for oxalate (4.28) indicates the pH at which there are equal values of monobasic and dibasic oxalates.  At the pH of blood, which is extremely constant, virtually all oxalate is in the dibasic form. Because the pH of urine varies greatly, oxalate is mainly in the dibasic form in average urine while it is in both the monobasic and dibasic form in very acidic urine samples. When oxalates are tested, they are all converted to the same form before testing so they may be termed oxalates, oxalate, or oxalic acid.

Insolubility is a Key Factor in Oxalate Toxicity

Solubility of oxalate at body temperature is only approximately 5 mg/L at a pH of 7.0. The solubility of oxalic acid in water, in contrast, is approximately 106,000 mg/L. Thus, the oxalate form of oxalic acid is extremely insoluble. At most physiological pH values, oxalate salts are predominant. Oxalate has the ability to form salts with a wide variety of metals but each of these salts has a different solubility. A yardstick for measuring solubilities of different salts is called the solubility product constant or Ksp. The smaller the value of the Ksp, the greater the insolubility of a salt. Another way to express this is that the lower the Ksp, the greater the tendency of that salt to form insoluble crystals that may form in tissues. The table below lists the Ksp salts of oxalic acid in their order of solubility with the most insoluble salts listed at the top.

What is the importance of these solubility product numbers?

First, the Ksp for calcium oxalate indicates that whenever the product of the concentration of calcium and oxalate concentrations in blood exceeds the Ksp, calcium oxalate crystals may form and deposit in the tissues. Since the calcium concentration in blood hardly varies because of homeostatic mechanisms, it is the oxalate concentration in blood that varies widely and that determines whether or not calcium oxalate crystals form and deposit in the tissues. Zinc oxalate also has a very small Ksp so that if oxalates are present in high quantities in the intestinal tract, most of the zinc oxalate formed will not be absorbed because it is highly insoluble.

Second, mercury oxalate had the lowest Ksp of any oxalate salt that I could find. If an individual is exposed to inorganic mercury and has high oxalates in the blood or tissues, insoluble mercury oxalates may form in the blood and tissues that are unable to be eliminated.

The mercury used in vaccines as a preservative is an organic form that is converted to inorganic mercury. If an individual who is vaccinated is on antibiotics or was on antibiotics in the past, they may have extensive yeast/fungal overgrowth of the intestinal tract. They would absorb significant amounts of oxalates from these organisms that would trap mercury in the tissues and prevent its elimination. Many parents who talked with me indicated that their children had bad vaccine reactions while on antibiotics at the time of vaccination.

Third, magnesium oxalates are much more soluble than calcium oxalates. Thus, if magnesium supplements are given by themselves, oxalates from food or yeast/fungal sources that combine with magnesium are much more likely to be absorbed than calcium oxalates. However, transdermal magnesium or magnesium from Epsom salts baths that enters the blood and tissues through the skin might help to dissolve calcium or mercury oxalate crystals that had already formed in the blood or tissues.

Testing for Oxalates

The most convenient way of testing oxalates is with the Organic Acids Test (OAT) from The Great Plains Laboratory, Inc.

The Organic Acids Test checks for the presence of:

  • Oxalic acid (oxalates) -Tests for all forms of oxalic acid and its salts or conjugate bases, oxalates

  • Arabinose - Important Candida indicator which strongly correlates with oxalates

  • Glycolic acid (glycolate)- Indicator of genetic disease of oxalate metabolism called Hyperoxaluria type I due to a deficiency in the enzyme activity of alanine glyoxylate amino transferase (AGT).

  • Glyceric acid (glycerate) - Indicator of genetic disease of oxalate metabolism called Hyperoxaluria type II due to a deficiencyin an enzyme (GRHPR) that has two biochemical activities: glyoxylate reductase (GR) and hydroxypyruvic reductase (HPR).

  • Ascorbic acid (ascorbate, vitamin C) - Indicates nutritional intake of vitamin C and/or excessive destruction. Vitamin C can be excessively converted to oxalates when free copper is very high. Evaluate further with copper/zinc profile from The Great Plains Laboratory.

  • Pyridoxic acid - Indicator of vitamin B-6 intake. The enzyme activity alanine glyoxylate amino transferase (AGT) requires vitamin B-6 to eliminate glyoxylic acid or glyoxylate, a major source of excess oxalates.

  • Furandicarboxylic acid, hydroxy-methylfuroic acid - Markers for fungi such as Aspergillus infection, one of the proven sources of oxalates

  • Bacteria markers - A high amount of bacterial markers may indicate low values of beneficial bacteria such as Lactobacilli species that have the ability to destroy oxalates.

High Oxalate Food List

The foods below contain more than 10 mg oxalate per serving. A more detailed list is available online from the University of Pittsburgh Schools of the Health Sciences website.

Drinks
- Dark or "robust" beer
- Black tea
- Chocolate milk
- Cocoa
- Instant coffee
- Hot chocolate
- Juice made from high oxalate fruits (see below for high oxalate fruits)
- Ovaltine
- Soy drinks

Dairy
- Chocolate milk
- Soy cheese
- Soy milk
- Soy yogurt

Fats, Nuts, Seeds
- Nuts
- Nut butters
- Sesame seeds
- Tahini
- Soy nuts

Starch
- Amaranth
- Buckwheat
- Cereal (bran or high fiber
- Crisp bread (rye or wheat)
- Fruit cake
- Grits
- Pretzels
- Taro
- Wheat bran
- Wheat germ
- Whole wheat bread
- Whole wheat flour

Condiments
- Black pepper (more than 1 tsp.)
- Marmalade
- Soy sauce

Miscellaneous
- Chocolate
- Parsley

Fruit
- Blackberries
- Blueberries
- Carambola
- Concord grapes
- Currents
- Dewberries
- Elderberries
- Figs
- Fruit cocktail
- Gooseberry
- Kiwis
- Lemon peel
- Orange peel
- Raspberries
- Rhubarb
- Canned strawberries
- Tamarillo
- Tangerines

Vegetables
- Beans (baked, green, dried, kidney)
- Beets
- Beet greens
- Beet root
- Carrots

Vegetables Continued...

- Celery
- Chicory
- Collards
- Dandelion greens
- Eggplant
- Escarole
- Kale
- Leeks
- Okra
- Olives
- Parsley
- Peppers (chili and green)
- Pokeweed
- Potatoes (baked, boiled, fried)
- Rutabaga
- Spinach
- Summer squash
- Sweet potato
- Swiss chard
- Zucchini

 

REFERENCES

1. Tsao, G. Appl Microbiol. 1963 May; 11(3): 249-254. Production of Oxalic Acid by a Wood-Rotting Fungus.

2. Takeuchi H Konishi T, Tomoyoshi T. Observation on fungi within urinary stones. Hinyokika Kiyo. 1987 May;33(5):658-61.

3. Lee SH, Barnes WG, Schaetzel WP. Pulmonary aspergillosis and the importance of oxalate crystal recognition in cytology specimens. Arch Pathol Lab Med. 1986 Dec;110(12):1176-9.

4. Muntz FH. Oxalate-producing pulmonary aspergillosis in an alpaca. Vet Pathol. 1999 Nov;36(6):631-2.

5. Loewus FA, Saito K, Suto RK, Maring E. Conversion of D-arabinose to D-erythroascorbic acid and oxalic acid in Sclerotinia sclerotiorum. Biochem Biophys Res Commun. 1995 Jul 6;212(1):196-203.

6. Fomina M, Hillier S, Charnock JM, Melville K, Alexander IJ, Gadd GM. Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica. Appl Environ Microbiol. 2005 Jan;71(1):371-81.

7. Ruijter, G.J.G., van de Vondervoort, P.J.I. & Visser, J. (1999) Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese. Microbiology 145, 2569–2576.

8. Ghio AJ, Peterseim DS, Roggli VL, Piantadosi CA. Pulmonary oxalate deposition associated with Aspergillus niger infection. An oxidant hypothesis of toxicity. Am Rev Respir Dis. 1992 Jun;145(6):1499-502.

9. Takeuchi H, Konishi T, Tomoyoshi T. Detection by light microscopy of Candida in thin sections of bladder stone. Urology. 1989 Dec;34(6):385-7.

10. Ghio AJ, Roggli VL, Kennedy TP, Piantadosi CA. Calcium oxalate and iron accumulation in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2000 Jun;17(2):140-50.

11. Ott SM, Andress DL, Sherrard DJ. Bone oxalate in a long-term hemodialysis patient who ingested high doses of vitamin C. Am J Kidney Dis. 1986 Dec;8(6):450-4.

12. Hall BM, Walsh JC, Horvath JS, Lytton DG. Peripheral neuropathy complicating primary hyperoxaluria. J Neurol Sci. 1976 Oct;29(2-4):343-9.

13. Sahin G, Acikalin MF, Yalcin AU. Erythropoietin resistance as a result of oxalosis in bone marrow. Clin Nephrol. 2005 May;63(5):402-4.

14. Sarma AV, Foxman B, Bayirli B, Haefner H, Sobel JD. Epidemiology of vulvar vestibulitis syndrome: an exploratory case-control study. Sex Transm Infect. 1999 Oct;75(5):320-6.

15. http://www.thevpfoundation.org/effective_treatment.htm

16. Shirane Y, Kurokawa Y, Miyashita S, Komatsu H, Kagawa S. Study of inhibition mechanisms of glycosaminoglycans on calcium oxalate monohydrate crystals by atomic force microscopy. Urol Res. 1999 Dec;27(6):426-31.

17. Chetyrkin SV, Kim D, Belmont JM, Scheinman JI, Hudson BG, Voziyan PA. Pyridoxamine lowers kidney crystals in experimental hyperoxaluria: a potential therapy for primary hyperoxaluria.

18. Sangaletti O, Petrillo M, Bianchi Porro G. Urinary oxalate recovery after oral oxalic load: an alternative method to the quantitative determination of stool fat for the diagnosis of lipid malabsorption. J Int Med Res. 1989 Nov-Dec;17(6):526-31.

19. Kumar R, Mukherjee M, Bhandari M, Kumar A, Sidhu H, Mittal RD. Role of Oxalobacter formigenes in calcium oxalate stone disease: a study from North India. Eur Urol. 2002 Mar;41(3):318-22.

20. Azcarate-Peril MA, Bruno-Barcena JM, Hassan HM, Klaenhammer TR. Transcriptional and functional analysis of oxalyl-coenzyme A (CoA) decarboxylase and formyl-CoA transferase genes from Lactobacillus acidophilus. Appl Environ Microbiol. 2006 Mar;72(3):1891-9.

21. Baggio B, Gambaro G, Zambon S, Marchini F, Bassi A, Bordin L, Clari G, Manzato E. Anomalous phospholipid n-6 polyunsaturated fatty acid composition in idiopathic calcium nephrolithiasis. J Am Soc Nephrol. 1996 Apr;7(4):613-20.

22. Gambaro G, Bordoni A, Hrelia S, Bordin L, Biagi P, Semplicini A, Clari G, Manzato E, Baggio B. Dietary manipulation of delta-6-desaturase modifies phospholipid arachidonic acid levels and the urinary excretion of calcium and oxalate in the rat: insight in calcium lithogenesis. J Lab Clin Med. 2000 Jan;135(1):89-95.

23. Santhosh Kumar M, Selvam R. Supplementation of vitamin E and selenium prevents hyperoxaluria in experimental urolithic rats. J Nutr Biochem. 2003 Jun;14(6):306-13.

24. Pragasam V, Kalaiselvi P, Sumitra K, Srinivasan S, Varalakshmi P. Pragasam V, Kalaiselvi P, Sumitra K, Srinivasan S, Varalakshmi P. Counteraction of oxalate induced nitrosative stress by supplementation of l-arginine, a potent antilithic agent. Clin Chim Acta. 2005 Apr;354(1-2):159-66. Epub 2005 Jan 19.

25. Takenouchi KAso K, Kawase K, Ichikawa H, Shiomi T. On the metabolites of ascorbic acid, especially oxalic acid, eliminated in urine, following administration of large amounts of ascorbic acid. J Vitaminol (Kyoto). 1966 Mar 10;12(1):49-58.

26. Curhan, G. C., Willett, W. C., Speizer, F. E., Stampfer, M. J. Intake of vitamins B6 and C and the risk of kidney stones in women. J Am Soc Nephrol 10:4:840-845, Apr 1999

27. Dolske MC, Spollen J, McKay S, Lancashire E, Tolbert L. A preliminary trial of ascorbic acid as supplemental therapy for autism. Prog. Neuropsycho-pharmacol Biol Psychiatry. 1993 Sep;17(5):765-74.